Machine Learning with Python

Brought by: Coursera

Overview

Get ready to dive into the world of Machine Learning (ML) by using Python! This course is for you whether you want to advance your Data Science career or get started in Machine Learning and Deep Learning.

This course will begin with a gentle introduction to Machine Learning and what it is, with topics like supervised vs unsupervised learning, linear & non-linear regression, simple regression and more.

You will then dive into classification techniques using different classification algorithms, namely K-Nearest Neighbors (KNN), decision trees, and Logistic Regression. You’ll also learn about the importance and different types of clustering such as k-means, hierarchical clustering, and DBSCAN.

With all the many concepts you will learn, a big emphasis will be placed on hands-on learning. You will work with Python libraries like SciPy and scikit-learn and apply your knowledge through labs. In the final project you will demonstrate your skills by building, evaluating and comparing several Machine Learning models using different algorithms.

By the end of this course, you will have job ready skills to add to your resume and a certificate in machine learning to prove your competency.

Syllabus

  • Introduction to Machine Learning
    • In this module, you will learn about applications of Machine Learning in different fields such as health care, banking, telecommunication, and so on. You’ll get a general overview of Machine Learning topics such as supervised vs unsupervised learning, and the usage of each algorithm. Also, you understand the advantage of using Python libraries for implementing Machine Learning models.
  • Regression
    • In this module, you will get a brief intro to regression. You learn about Linear, Non-linear, Simple and Multiple regression, and their applications. You apply all these methods on two different datasets, in the lab part. Also, you learn how to evaluate your regression model, and calculate its accuracy.
  • Classification
    • In this module, you will learn about classification technique. You practice with different classification algorithms, such as KNN, Decision Trees, Logistic Regression and SVM. Also, you learn about pros and cons of each method, and different classification accuracy metrics.
  • Linear Classification
  • Clustering
    • In this module, you will learn about clustering specifically k-means clustering. You learn how the k-means clustering algorithm works and how to use k-means clustering for customer segmentation.
  • Final Exam and Project
    • In this module, you will do a project based of what you have learned so far. You will submit a report of your project for peer evaluation.

Taught by

SAEED AGHABOZORGI

Machine Learning with Python
Go to course

Machine Learning with Python

Brought by: Coursera

  • Coursera
  • Free
  • English
  • Certificate Available
  • Available at any time
  • intermediate
  • Arabic, French, Portuguese, Italian, German, Russian, English, Spanish, Korean, Thai, Indonesian, Farsi, Kazakh, Hindi, Swedish, Greek, Chinese, Ukrainian, Japanese, Polish, Dutch, Turkish